Particle Acceleration and Emission in Relativistic Jets

Ken Nishikawa (NSSTC/MSFC)

Collaborators:

- P. Hardee (Univ. of Alabama, Tuscaloosa)
- G. Richardson (NSSTC/MSFC)
- R. Preece (NSSTC/MSFC)
- H. Sol (Obs. de Paris-Meudon)
- G.J. Fishman (NSSTC/MSFC)

NSSTC Colloquium on March 21, 2003

Outline of talk

- Motivations
- Scientific goals
- Observations of accelerated particles
- MHD simulations of relativistic jets
- 1-D particle simulations of shock surfing model
- 3-D particle simulations of relativistic jets
 - * Thin jets (electron-positron, electron-ion)
 - * Flat jets (electron-positron, electron-ion) (infinitely wide) (parallel, perpendicular)
- Summary of present 3-D simulations (Weibel Instability)
- Future plans of relativistic particle simulations of relativistic jets

1. Motivations

- Study particle acceleration at external and internal shocks in relativistic jets complimentary to RMHD and other test particle simulations using relativistic particle-in-cell simulations
- Examine the shock surfing acceleration in a 3-D system proposed in one-dimensional simulations including the dynamics of shock transition region
- Study structures and dynamics of shocks caused by instabilities at the shock front and transition region in relativistic jets
- Estimate synchrotron emission from accelerated particles
- Examine possibilities for afterglows in gamma-ray bursts with appropriate ambient plasmas

Scientific objectives

- How do shocks in relativistic jets evolve in accelerating particles and emission?
- Do reverse shocks create internal shocks?
- How do 3-D relativistic particle simulations reveal the dynamics of shock front and transition region?
- What is the main acceleration mechanism in relativistic jets, shock surfing, wakefield, Fermi models or stochastic processes?
- How do shocks in relativistic jets evolve in the different ambient plasma and magnetic field conditions in various astrophysical phenomena?

Jets from binary stars

(Schematic figure)

Crab Nebula Pulsar Shrugs

a composite image of the center of Crab Nebula where red represents radio emission, green represents visible emission, and blue represents X-ray emission.

A jet model for the broadband spectrum of RXTE J1118+480

(Markoff, Falcke, & Fender, 2001, AA, 372, L25)

Relativistic jet (3-D RHD simulation)

(Aloy et al. 1999)

 η =0.01, γ =5/3, v_b = 0.99c, $W_b \approx 7.09$, $v_h \approx 0.5c$, with helical perturbation

 $t=152R_b/c$

High resolution 3D simulations of relativistic jets by M.A. Aloy

in collaboration with

J.Mª Marti, J.Mª Ibañez & E. Mueller

Density structure of relativistic jet in collapsar

2-D RHD simulation

(Zhang, Woosley, & MacFadyen, astro-ph/0207436)

3-D RMHD simulation ($\Gamma = 4.56$)

(Nishikawa et al. 1997)

Ideal fluid, Frozen condition

 $(t = 8.5\tau_{\rm S})$

 $\Gamma = 4.56$

 $\eta = 0.3$

Strong B-field

Weak B-field

Necessity of particle simulation for particle acceleration

- MHD simulations provide global dynamics of relativistic jets including hot spots
- MHD simulations include heating due to shocks, however do not create high energy particles (MHD simulation + test particle (Tom Jones))
- In order to take account of acceleration the kinetic effects need to be included
- Test particle (Monte Carlo) simulations can include kinetic effects, but not self-consistently
- Particle simulations provide particle acceleration and emission self-consistently, however due to the computational limitations, the size of jet is small comparing with MHD simulations

Schematic GRB from a massive stellar progenitor

(Meszaros, Science 2001)

Accelerated particles emit waves at shocks

Accelerated electrons (>TeV) in SN 1006

Shock is responsible for electron acceleration

Collisionless shock

Electric and magnetic fields created selfconsistently by particle dynamics randomize particles

(Buneman 1993)

Magnetosonic shock structure in 1-D system

Illustration of the electron surfing mechanism

Time evolution of E_x and particle trajectories

Particle trajectories in x-y plane

3-D simulation

injected at $z = 25\Delta$

Weibel instability

(Medvedev & Loeb, 1999, ApJ)

3-D relativistic particle simulation of thin jet

Electron-positron jet, $m_i/m_e = 1$

$$\beta = v_i/c = 0.9798$$
, $v_{et}/c = 0.1$

$$\eta = n_j/n_a \approx 0.66$$

 $\gamma = (1-(v/c)^2)^{-1/2} = 5$ (Lorentz factor) ($\approx 5 \text{MeV}$)

$$v_{je} = 0.1v_{et}, v_{ji} = 0.1v_{it}$$

$$\omega_{\rm pe}/\Omega_{\rm e} = 2.89, V_{\rm A}/c = 0.346,$$

$$\beta_e (=8\pi n_e T_e/B^2) = 1.66, M_A = v_i/V_A = 2.83$$

$$\omega_{pe}\Delta t = 0.013$$
, $r_i = 4 \Delta x \approx \lambda_{ce}$ (jet radius)

$$\rho_{e} = 1.389 \Delta, \ \rho_{p} = 1.389 \Delta$$

Thin electron-positron jet

3-D structure of relativistic jet (electrons)

Gamma of relativistic jet (electrons)

 $\gamma = (1-(v/c)^2)^{-1/2}$

Z-GAMMA SPACE T=1700.0

Perpendicular acceleration by shock

Electron-ion jet (thin)

Electron-ion jet, $m_i/m_e = 20$

$$\beta = v_j/c = 0.9798$$
, $v_{et}/c = 0.1$

$$\eta = n_i/n_a \approx 0.66$$

$$\gamma = (1-(v/c)^2)^{-1/2} = 5$$

$$v_{je} = 0.1v_{et}, v_{ji} = 0.1v_{it}, v_{it} = 0.224v_{et}$$

$$\omega_{pe}/\Omega_{e} = 2.89, V_{A}/c = 0.0775, M_{A} = 12.65$$

$$\beta_e (=8\pi n_e T_e/B^2) = 0.167$$

$$\omega_{pe}\Delta t = 0.026, r_j = 4 \Delta x \approx \lambda_{ce}$$

$$\rho_e = 1.389 \Delta, \ \rho_i = 6.211 \Delta$$

Thin electron-ion jet

Electron-ion jet (thin)

Lorenz factor of electron jet $\gamma = (1-(v/c)^2)^{-1/2}$

$$\omega_{pe}t = 26$$

Acceleration in perpendicular velocity (electron)

Suprathermal electron energy

electron-ion

Structure of jet head

Flat jet injected parallel to B

Electron-ion jet, $m_i/m_e = 20$

$$\beta = v_j/c = 0.9798$$
, $v_{et}/c = 0.1$

$$\eta = n_i/n_a \approx 0.85$$

$$\gamma = (1-(v/c)^2)^{-1/2} = 5$$

$$v_{je} = 0.1v_{et}, v_{ji} = 0.1v_{it}, v_{it} = 0.0111$$

$$\omega_{pe}/\Omega_{e} = 2.89, V_{A}/c = 0.0775, M_{A} = 12.65$$

$$\beta_e (=8\pi n_e T_e/B^2) = 1.66$$

$$\omega_{pe}\Delta t = 0.026$$
, $r_j = 40 \Delta x \approx 10 \lambda_{ce}$ (infinite)

$$\rho_{\rm e} = 1.389 \Delta, \; \rho_{\rm i} = 6.211 \Delta$$

Electron density (arrows: B_z, B_x)

Lorenz factor of jet electron

Perpendicular acceleration of jet electron

Z-VPER SPACE T= 900.0

Weibel instability in the transition region

$$\omega_{pe}t = 23.4$$

current filamentation

Perpendicular current J_y $(J_{z,x})$

1-d structure of jet dynamics

$$X/\Delta = 38,$$

 $Y/\Delta = 38, 43, 48$

Weibel instability seen in the x - y plane

 $\omega_{pe}t = 23.4$ at $Z/\Delta = 120$ (just behind the shock front)

(arrows: magnetic fields)

Dynamics of jet head in x-y plane J_Z

Dynamics of jet head Electron density $n_e \approx 50$

1.214

Flat electron-ion jet injected perpendicular to B

Electron-ion jet, $m_i/m_e = 20$

$$\beta = v_j/c = 0.9798, v_{et}/c = 0.1$$

$$\gamma = (1-(v/c)^2)^{-1/2} = 5$$

$$v_{je} = 0.1v_{et}, v_{ji} = 0.1v_{it}, v_{it} = v_{et}$$

$$\omega_{pe}/\Omega_{e} = 2.89, V_{A}/c = 0.0775, M_{A} = 12.66$$

$$\beta_e (=8\pi n_e T_e/B^2) = 16.6$$

$$\omega_{pe}\Delta t = 0.026$$
, $r_j = 40 \Delta x \approx 10 \lambda_{ce}$ (infinite width)

$$n_i \approx 0.66n_e$$
, $\rho_e = 13.89\Delta$, $\rho_i = 62.11\Delta$

Electron density in z-x plane

Perpendicular particle acceleration (electrons)

Lorenz factor of electrons for flat electron-ion jet injected perpendicular to B

Summary

- Simulation results show Weibel instability which creates filamented currents and density along the propagation of jets.
- The growth rate of Weibel instability depends on the size of jets, compositions, strength and direction of ambient magnetic fields.
- In a one-dimensional system Buneman instability is responsive to the surfing acceleration, Weibel instability is excited in the 3-D system.
- In order to understand the complex shock dynamics of relativistic jets, further simulations with additional physical mechanisms such as radiation loss and inverse Compton scattering are necessary.

- The magnetic fields created by Weibel instability generate highly inhomogeneous magnetic fields, which is responsible for Jitter radiation (Medvedev, 2000, ApJ).
- Weibel instability may play a major role in particle acceleration in relativistic jets
- The dynamics of jet head is complicated and further investigation is necessary

Future plans for particle acceleration in relativistic jets

- Further simulations with a systematic parameter survey will be performed in order to understand shock dynamics
- In order to investigate shock dynamics further diagnostics will be developed
- In order to improve the performance of the code, HPF or MPI will be used
- Implement better boundary conditions at the free boundaries
- Investigate synchrotron (jitter) emission from the accelerated electrons and compare with observations (Blazars and gamma-ray burst emissions)
- Develop a new code implementing synchrotron loss and/or inverse Compton scattering
- Compare simulation results with relativistic electro-positron experiments at SLAC to understand particle acceleration in astrophysical relativistic jets

Fushin

emission

Rashin

